
A Comparison of Nine Basic Techniques for
Requirements Prioritization

Mikko Vestola
Helsinki University of Technology

Email: mikko.vestola@tkk.fi

Abstract—Requirements prioritization is an important activity
in software development. Numerous different techniques toprior-
itize requirements exist. In this paper, we focus on the following
research questions: 1) What empirically studied requirements
prioritization techniques are presented in the literature? 2) How
easy to use, accurate and scalable are these techniques? Total
of nine basic requirements prioritization techniques wereiden-
tified: 1) Numeral assignment technique, 2) Analytic hierarchy
process (AHP), 3) Hierarchy AHP, 4) Minimal spanning tree,
5) Cumulative voting (CV), 6) Hierarchical cumulative voting
(HCV), 7) Priority groups, 8) Binary priority list (BPL), 9) Bubble
sort. The techniques are presented and analyzed based on the
empirical studies from the literature. The results indicate that
none of the techniques can be considered the best one. The best
prioritization technique depends on the situation (e.g. number
of requirements used or desired results scale). This study also
reveals that there are several problems with the existing empirical
studies, which make it hard to compare their results to each
other. Therefore, this paper also presents recommended practices
for future empirical studies about requirements prioritiz ation
techniques.

Index Terms—Requirements, prioritization, techniques, meth-
ods, approaches, empirical, comparison

I. I NTRODUCTION

Requirements prioritization is an important activity in soft-
ware development. Usually, the number of requirements from
the customers exceeds the number of features that can be
implemented within the given time and available resources
[1]. For that reason, some of the requested features will not
be completed or they are moved to later releases. Therefore,
the customer and the development teams must decide what is
the most essential functionality which should be implemented
as early as possible. In other words, the stakeholders should
prioritize the requirements.

There are numerous different techniques presented in the
literature how to prioritize requirements. It might be difficult
to pick the most suitable method because of the large number
of them. Some methods are more time consuming than others
but provide more accurate results. Some methods scale well
to be used with larger number of requirements but provide
very coarse results. In other words, none of the techniques
can really be considered the best one but a practitioner must
pick a technique that is the most suitable for his situation,for
example, in terms of scalability, accuracy and time consump-
tion.

This paper helps to decide the right technique for pri-
oritizing requirements by answering the following research

questions:

1) What empirically studied requirement prioritization
techniques are presented in the literature?

2) Based on the empirical studies, how did these techniques
perform, especially in terms of easy of use, accuracy and
scalability?

Hopefully, this paper helps to choose the right prioritization
technique and also helps to develop completely new prioriti-
zation methods using these prioritization techniques as basic
building blocks. In addition, the results of this paper alsoguide
which techniques need more empirical studies.

The rest of this paper is organized as follows. In Section II,
we 1 introduce the classification of requirements prioritiza-
tion approaches. The following three sections, Section III,
Section IV and Section V, present different requirements
prioritization techniques classified based on the results they
provide (nominal, ordinal or ratio scale) and also analyze how
these techniques are empirically studied. Finally, Section VI
concludes the paper.

II. REQUIREMENTS PRIORITIZATION LEVELS

According to [2] and [3], requirements prioritization ap-
proaches can be classified into four different abstraction lev-
els, namely: prioritization activities, techniques, methods and
processes. Approaches on higher levels utilize lower level
activities and techniques.

Requirements prioritizationactivities are the lowest level
approaches. This level refers to the underlying primitive activ-
ities which are used to rank requirements. One basic approach
is to separately assign a rank to each requirement accordingto
a specific criterion (e.g. importance for the customer). Another
way is that requirements are ranked by assigning a preference
value to pairs of requirements (pair-wise comparison). A third
approach is to group each requirement to one specific class
from a number of predefined classes of importance.

Prioritizationtechniques use the results from the lower level
prioritization activities and possibly do some calculations to
compute the requirements ordering. Three common scales to
present the results are: nominal scale, ordinal scale and ratio
scale. For example, the Analytic Hierarchy Process (AHP) is
an example of a prioritization technique. It utilizes pair-wise
comparison activity to calculate the priorities for requirements.

1Use of the plural pronoun is customary even in solely authored research
papers and thus is also used in this paper.

The final result from AHP is a list of requirements based on
a ratio scale. In other words, the priorities calculated with
AHP can answer the question: ”How much important is this
one requirement when compared to some other?” Another
example of prioritization technique is the Binary prioritylist
(BPL) approach. It also uses pair-wise comparison activity
but does not require so many pair-wise comparisons than
AHP and produces a ranked list of requirements based on
an ordinal scale. Unlike AHP, the results of BPL can not
answer the above mentioned question. In other words, the BPL
technique can only tell that one requirement is more important
than another but not to what extent. As we can see, these
two different prioritization techniques both utilize pair-wise
comparison but they use it in different ways and thus produce
very different results.

On the next level of requirements prioritization approaches
are the requirements prioritizationmethods. These methods are
usually more sophisticated than techniques and are developed
specifically for requirements prioritization. While a technique
often focuses on prioritizing based on one aspect (e.g impor-
tance for customer), a method usually utilizes more variables
(e.g. importance, cost, dependencies). For example, the Cost-
Value approach is one example of prioritization methods. It
presents requirements in a two dimensional cost-value dia-
gram. Both cost and value for each requirement are computed
with the AHP technique. Other examples of prioritization
methods are Planning game, EVOLVE, Quantitative Win-Win
and Wiegers’ method.

On the highest abstraction level are the prioritizationpro-
cesses. This refers to the description of steps what needs
to be done in an organization to prioritize requirements.
For example, what are the roles of different stakeholders, in
which order things needs to be done and how requirements
prioritization suits to the organization’s software process.

In the following sections, we focus on prioritization tech-
niques. These are the basic building blocks for more sophis-
ticated prioritization methods. The user should be noted that,
for convenience, we might use the termstechnique andmethod
interchangeably later in this paper, although they precisely
mean different. The techniques presented at the following
sections are classified based on the results they give: nominal
scale, ratio scale and ordinal scale. Total of nine techniques are
included: Numeral assignment technique, Analytic hierarchy
process (AHP), Hierarchy AHP, Minimal spanning tree, Cu-
mulative voting (CV), Hierarchical cumulative voting (HCV),
Priority groups, Binary priority list (BPL) and Bubble sort.

III. N OMINAL SCALE PRIORITIZATION TECHNIQUES

Nominal scale prioritization techniques produce lists of
categories to which objects can be classified. In other words,
requirements are categorized into groups based on their im-
portance. All requirements in one priority group have equal
priority. One can not tell if some requirement is more or less
important than another within one priority group. Numeral
assignment technique is the only technique included in this
category. The MoSCoW technique is also included, however,

it is basically a numeral assignment technique and thus is not
included as a separate subsection.

A. Numeral assignment technique

The numeral assignment technique is said to be the most
common technique for prioritization of requirements [4], [5].
It is a simple technique based on grouping requirements into
different priority groups. The number of priority groups may
vary, however, three groups is perhaps the most common
division. Priority groups may be just priority numbers from1
to 3 or they can be labeled, for example, as ”high”, ”medium”,
and ”low”. The result of this technique is a collection of re-
quirements classified into different priority groups. All require-
ments in one priority group have equal priority. The MoSCoW
technique is an example of numeral assignment technique.
It defines four priority groups: ”MUST have”, ”SHOULD
have”, ”COULD have” and ”WON’T have”. Requirements are
assigned to these groups based on the importance of having
them implemented.

Even though the numeral assignment technique is consid-
ered to be the most common technique for prioritization of
requirements, there is actually little empirical studies about
the effectiveness of the technique. Three studies were iden-
tified which involved prioritizing requirements using numeral
assignment technique.

The first one is a study by Karlsson where he compares the
numeral assignment approach (using scale ranging from 1 to
5) to AHP [6]. The number of requirements to prioritize was
14 which all were real requirements from a real project. Inter-
estingly, the study shows that numeral assignment technique
is slower than AHP. On average, it took about twice as much
time to perform the prioritization with numeral assignment
technique than with AHP. Moreover, the numeral assignment
technique was also seen to be less informative and inaccurate
when compared to AHP.

The second empirical study about numeral assignment tech-
nique was performed by Danesh and Ahmad [7]. The settings
of the study were basically identical to the Karlsson’s study
above. Danesh and Ahmad conducted two studies which both
prioritized nine requirements. The results were also quite
identical to Karlsson’s: pair-wise comparison technique was
seen more accurate and faster than the numeral assignment
technique.

Both studies clearly indicate that the numeral assignment
technique is not effective when the number of requirements is
low (say 20 or less). There seems to be better techniques,
like AHP, which provide more accurate results faster. To
mix up, Hatton provides opposite results in her study [8]
where practitioners prioritized total of 12 requirements with
the following three prioritization methods: MoSCoW, AHP
and Cumulative voting (CV). On the contrary to the previously
mentioned studies, in Hutton’s paper, the MoSCoW technique
is considered the best method. It was the easiest and fastest
one and provided the highest user confidence. However, Hatton
points out in [9] that MoSCoW is probably best used in the
early stages of projects when requirements are not specifiedin

a great degree of detail. Instead, in the later stages of projects,
when stakeholders have greater understanding of the system
developed, other methods such as CV and AHP might be
better.

To sum up, it seems that the numeral assignment technique
might be better when prioritizing medium or large number
of requirements. However, more empirical studies should be
performed to confirm this assumption.

IV. RATIO SCALE PRIORITIZATION TECHNIQUES

Ratio scale prioritization techniques produce ranked lists
of requirements. These techniques can answer the question:
”How much important is this one requirement when compared
to another?”. In other words, these techniques can provide
the relative difference between requirements. The following
techniques are included in this category: Analytic hierar-
chy process (AHP), Hierarchy AHP, Minimal spanning tree,
Cumulative voting (CV) and Hierarchical cumulative voting
(HCV).

A. Analytic hierarchy process (AHP)

Definitely the most widely studied requirements prioritiza-
tion technique is the Analytic hierarchy process (AHP), which
was developed by Saaty [10] and applied to software engineer-
ing field by Karlsson [6]. AHP is also commonly known as
the pair-wise comparison technique [4], [6], however, it isa
somewhat misleading term because pair-wise is nothing unique
to AHP but also other techniques use it, such as Bubble sort
and Binary priority list.

The basic idea of AHP is to calculate the priorities of
requirements by comparing all unique pairs of requirementsto
estimate their relative importance. In other words, the person
performing the comparison has to decide which requirement
is more important, and to what extent using a scale 1-9.

Fig. 1. An example matrix created with AHP. The participantsusing AHP
need only to fill the upper highlighted half of the matrix. Each requirement
is equal value when compared to itself (thus value 1 in the diagonal).

The steps required to prioritize with AHP are the following
(see Figure 1 for more explanation) [6] :

1) Create ann×n matrix (n is the number of requirements)
and insert the n requirements in the rows and columns
of the matrix.

2) For each unique pair of requirements, for example, A
and B, insert their relative intensity of importance in
the position where the row of A meets the column B.
At the same time, the reciprocal values are inserted to

the transposed positions (e.g. if cell AB=4 then cell
BA=1/4).

3) Finally, to get the relative priority of each requirement,
calculate the eigenvalues of the resulting comparison
matrix. The final result is therefore the relative priorities
of the requirements (e.g. A=50%, B=12% and C=38%).

AHP requires total ofn× (n− 1)/2 comparisons. Because
pair-wise comparisons in AHP produce much redundancy,
AHP also provides means to check the accuracy of the
comparisons by calculating the consistency ratio.

Karlsson et al. [11] compares AHP to five other priori-
tization techniques: hierarchy AHP, minimal spanning tree,
binary search, bubble sort and priority groups. Total of 13
requirements were prioritized with all these methods by three
persons. Although AHP was the slowest approach when con-
sidering total time spent in prioritizing, Karlsson et al. find
AHP to be the most promising approach, mainly because
they find it trustworthy and fault tolerant. It also includesa
consistency check and, as a ratio scale technique, it provides
more informative results than any other tested method. Still,
AHP is relatively easy to use (not so easy but not so hard
either). Similar results are described in [6] and [7].

On the contrary to the previously mentioned studies, two
studies describe entirely different results. Ahl [12] compares
five prioritization methods: AHP, CV, binary search tree,
Planning Game and Planning Game combined with AHP. The
study used students as subjects to prioritize 13 requirements.
The results of the study indicate that AHP is the worst
candidate. It is difficult to handle, not scalable and slow.
Similar results are provided by Hatton [8]. In Hatton’s study,
MoSCoW, AHP and CV were compared and AHP was the
hardest to use, took the longest time to perform and contained
the lowest user confidence. Two other studies confirm the
problems with user confidence. Studies by Lehtola et al. [13]
and Lena Karlsson et al. [14] found out that the practitioners
felt a loss of control over the prioritization process when
they used AHP. Lehtola et al. also pointed out that users
found it difficult to estimate how much more valuable one
requirement is than another and also that the practitioners
seemed to mistrust the results they got with AHP.

To sum up, all studies admit that AHP is not scalable as
such. Therefore, it is not really suitable for anything else
than prioritizing small number of requirements (say, less than
20). However, the results from the empirical studies are quite
conflicting that is AHP even reasonable approach to prioritize
small number of requirements or do other techniques provide
better results with less work.

B. Hierarchy AHP

The Analytic hierarchy process (AHP) described at the
previous section does not really scale well because of the high
number of required pair-wise comparisons (n × (n − 1)/2).
The number of pair-wise comparisons grows exponentially:
we need ”only” 45 comparisons with 10 requirements but with
five times more requirements the number of comparisons is
as much as 1225. Clearly, AHP as such is not a reasonable

technique for prioritizing large or even medium number of re-
quirements. Therefore, Karlsson et al. introduced the hierarchy
AHP technique [11]. The technique uses AHP to prioritize
requirements only at the same level of hierarchy. This can
dramatically reduce the number of required comparisons since
not all the requirements are compared pair-wise. However, the
trade-off is that the ability to identify errors is also reduced
because of the reduced number of redundant comparisons.

Unlike AHP, hierarchy AHP has not really been empirically
researched. The only study is the one that presented this
technique [11]. In that paper, 13 requirements were prioritized
with the following techniques: hierarchy AHP, AHP, minimal
spanning tree, binary search, bubble sort and priority groups.
Hierarchy AHP was the second fastest technique. However, it
was not considered so easy to use and, moreover, not as much
reliable and fault tolerance as plain AHP. Therefore, using
AHP for small number of requirements is preferred. Although
the hierarchy AHP approach is definitely intended to be used
with tens or hundreds of requirements, no empirical studies
show how well hierarchy AHP actually performs when dealing
with large number of requirements.

C. Minimal spanning tree

Another prioritization technique introduced by Karlsson et
al. [11] is the minimal spanning tree technique. As described
at section IV-A, AHP requires quite a lot of pair-wise compar-
isons and contains much redundancy. For example, if require-
ment A is more important than B and B is more important than
C, comparing A and C is redundant because we already know
that A is also more important than C. This redundancy helps
to identify judgment errors but also creates scalability issues.
This problem is what the minimal spanning tree technique tries
to solve. The basic idea of minimal spanning tree method is
that all the redundant comparisons from AHP (e.g. comparing
A to C in the previous example) are not performed at all. This
will dramatically reduce the number of comparisons to only
n − 1 when compared ton ∗ (n − 1)/2 required by AHP.
The required comparisons can be constructed by creating a
minimal spanning tree from the requirements. This reduced
number of comparisons is still enough to calculate the relative
intensity of importance between the requirements. However,
the ability to identify inconsistent judgments disappears.

Like hierarchy AHP, also the minimal spanning tree tech-
nique has been empirically studied only in the paper introduc-
ing this technique [11]. In that study, the minimal spanningtree
approach was the fastest one, however, subjective measures
from practitioners indicate that the technique provided the least
reliable results and also fault tolerance was poor. Based onthis
one study, it seems that the minimal spanning tree techniqueis
not the best method for prioritizing small number of require-
ments. It is a fast method, however, if reliability and fault
tolerance are more important than time consumption, better
methods exist such as AHP. Because of better scalability, the
minimal spanning tree technique might be better in prioritizing
large number of requirements. On the other hand, no empirical
studies support this assumption.

D. Cumulative voting (CV)

Cumulative voting (also know as the 100-point method
or the Hundred-Dollar Test [4]) is a simple method for
prioritizing software requirements. The basic idea is thatthe
stakeholders participating at prioritization are given a number
of imaginary units (100 dollars, 1000 points, etc.) which are
distributed among the requirements to prioritize. The number
of units assigned to a requirement represents its priority.
The results are presented on a ratio scale which provides
the information on how much one requirement is more/less
important than another.

Ahl [12] compares CV to four other prioritization methods:
binary search tree, AHP, Planning Game and Planning Game
combined with AHP. When prioritizing total of 13 require-
ments, the test subjects thought that CV was an easy method
to use and also one of the most accurate methods. CV was
also one of the fastest methods, however, it was believed to
be a bad candidate for handling large number of requirements.

In another study [8], 12 requirements were prioritized with
the following techniques: CV, MoSCoW and AHP. The results
from the study show that CV took longer time than MoSCoW
but was faster than AHP. In overall, the study shows that CV
is relatively easy to use and contains high user confidence.
However, also in this study, the practitioners felt that CV
probably does not scale well for large number of requirements.
Similar results were obtained in another study by Hatton [9].

In a study conducted by Regnell et al. [15], the stakeholders
prioritized 58 requirements with imaginary $100,000. The
study raised some concerns about CV. Firstly, the stakeholders
might lose overview as the number of requirements increases.
Secondly, CV might be sensitive to so called ”shrewd tactics”,
which means that stakeholders distribute their points based on
how they think others will do it in order to get high priorities
to their favorite requirements.

To sum up, CV seems to be an eligible technique to
prioritize small and medium number of requirements. On the
other hand, there are some concerns that CV does not scale
well. Because of the lack of empirical studies, it is hard to
say how well CV actually performs with many requirements
when compared to other prioritization techniques.

E. Hierarchical cumulative voting (HCV)

Hierarchical cumulative voting (HCV) was first introduced
by Berander and Jönsson [4]. HCV was developed to answer
the scalability issues in Cumulative voting (CV). The idea of
HCV is basically the same as behind CV. In other words, like
with CV, the prioritization with HCV is conducted by dis-
tributing points to requirements. However, when using HCV,
not all requirements are prioritized at the same time. Instead,
requirements are classified to different levels of hierarchies
and the prioritization is performed only within each hierarchy
level. Figure 2 shows an example how to use HCV. Instead
of prioritizing all five low-level requirements at the same time
like in CV, requirements are divided into two prioritization
blocks. Moreover, only requirements within a prioritization
block are prioritized together.

Fig. 2. An example how to use HCV. This example contains two levels
of requirements: high-level requirements (HLR) and low-level requirements
(LLR). Only requirements within a prioritization block (the grey areas) are
prioritized together. [4]

Only one empirical study dealing with HCV was identified
[5]. The study used master students to prioritize 27 require-
ments. In overall, HCV was seen to be reasonably easy to
use and scalable. However, the main focus of the paper is
on evaluating the effectiveness of HCV with and without
a compensation factor. Therefore, the study does not really
provide answers how well HCV performs when compared to
other prioritization techniques, such as hierarchy AHP.

V. ORDINAL SCALE PRIORITIZATION TECHNIQUES

Ordinal scale prioritization techniques produce ranked lists
of requirements. Unlike ratio scale techniques, ordinal scale
techniques can not answer the question ”How much important
is this one requirement when compared to another?”. In other
words, these techniques can only tell that one requirement
is more important than another but not to what extent. The
following techniques are included in this category: Priority
groups, Binary priority list (BPL), Minimal spanning tree and
Bubble sort.

A. Priority groups

The priority groups technique was first described by Karls-
son et al. [11]. Despite the name of the technique, it does
not actually produce groups of requirements as a final result.
Instead, the outcome is a ranked list of requirements. The basic
principle behind priority groups is the same as in numeral
assignment technique: assign each requirement into one of
the three groups: high, medium and low priority. However,
while numeral assignment technique groups requirements into
priority groups only once, priority groups technique does this
repeatedly. Figure 3 shows the idea of priority groups.

The steps required to prioritize requirements using the
priority groups approach are described below [11].

1) Gather all candidate requirements into one pile.
2) Put each requirement into one of the three groups: high,

medium or low priority

Fig. 3. Using priority groups. The original high, medium andlow groups
are further divided to subgroups [16].

3) In groups with more than one requirement, create three
new subgroups (high, medium, low) and put the re-
quirements within that group into these newly created
subgroups.

4) Repeat step 3 recursively until there is only one require-
ment in each subgroup.

5) As presentation, just read the requirements from left to
right.

The only empirical study about priority groups is the one
conducted by Karlsson et al. [11] in which total of 13
requirements were prioritized with the following techniques:
AHP, minimal spanning tree, binary search, bubble sort and
priority groups. The study concludes that the priority groups
technique is clearly the worst approach: it is quite slow to
perform and hard to use. Moreover, the technique got clearly
the lowest ranking when considering easy of use, reliability
and fault tolerance. Based on this one study, the technique
seems not to be suitable for prioritizing small number of
requirements. Better methods exist, such as AHP or Bubble
sort. However, one study is insufficient to draw any wide
conclusions, especially how does the priority groups technique
perform with large number of requirements.

B. Binary Priority List (BPL)

Binary Priority List (BPL) is a requirements prioritization
technique described in [17]. It is basically the same as the
Binary search tree (BST) approach which was introduced to
the requirements prioritization area by Karlsson et al [11].
In this paper we use the term BPL instead of BST because
the author of this paper believes that presenting the results
in a horizontal binary priority list (see Figure 4) is easier
to understand than using a vertical binary search tree (BST).
For example, it is much easier to remember that high priority
requirements go to top and low priority requirements go to
bottom instead of right and left.

Applying the BPL technique to prioritize requirements
consists of performing the following steps described in [17].

1) Collect all requirements to a single pile.

Fig. 4. Structure of Binary Priority List. For example, requirement R2 is
more important than R1, R3, L3 and L4. [17]

2) Take any one of the requirements from the pile and put
it as a root requirement.

3) Take another requirement and compare it to the root
requirement.

4) If the requirement has a lower priority than the root
requirement, compare it to the requirement below the
root requirement. If the requirement has higher priority
than the root requirement, compare it to the requirement
above the root. This is continued until a place where
there is no sub-requirement to compare with is encoun-
tered and the requirement can be finally placed to this
position.

5) Steps 3 to 4 are repeated for all requirements.
6) At the end, traverse the list in top-down order to get the

prioritized order of the requirements.

Total of three papers have empirically studied BPL. The first
one is the often mentioned study by Karlsson et al. [11]. When
comparing BPL, AHP, minimal spanning tree, bubble sort and
priority groups, BPL scored relatively weak in terms of ease
of use, time consumption, reliability and fault tolerance.After
AHP, BPL was the second slowest method to prioritize with
but did not provide as reliable and fault tolerance results as
AHP.

Another already mentioned study [12], by Ahl, describes
somewhat conflicting results. When comparing CV, BPL, AHP,
Planning Game and Planning Game combined with AHP, Ahl
comes to conclusion that BPL is the best out of the five
techniques. It is one of the best methods to scale up, it is the
easiest method to use and it gives the most accurate results.
However, in the study, it was the second slowest method being
only faster than AHP.

The latest empirical study about BPL is [17] in which BPL
is compared to Wiegers’ prioritization method based on the
following three factors: time consumption, ease of use and
subjective reliability of results. Two case studies were made
where product managers prioritized 46 and 68 requirements
with both methods. In both cases, BPL scored higher than

Wiegers’ method in all aspects of the comparison. BPL took
only quarter to third of the time of Wiegers’ method and was
also easier to use.

Although the results from the three studies above are
somewhat conflicting, BPL seems to be an eligible technique
for prioritizing small and medium number of requirements.
However, when dealing with a very large number of require-
ments, BPL might not be a feasible approach. For example,
Bebensee expects that BPL is not practicable for numbers
much more than 100 requirements [17].

C. Bubble sort

Bubble sort technique was first introduced by Karlsson et al.
to the requirements prioritization area for ranking requirements
[11]. Interestingly, the idea of bubble sort is closely related to
AHP. Both AHP and bubble sort techniques utilize the pair-
wise comparison activity. Moreover, both techniques require
n×(n−1)/2 pair-wise comparisons [11]. However, in bubble
sort, the decision maker only has to determine which of the
two requirements is more important, not to what extent like
in AHP.

The steps required to prioritize requirements with bubble
sort technique are the following [11]:

1) Outline the requirements in a vertical column.
2) Compare the top two requirements from the column with

each other to determine which is the most important. If
the lower requirement is more important than the top
one, swap their positions.

3) Repeat this pairwise comparison and swapping for the
second and third requirement, then third and fourth
requirement and so on until the bottom of the column
is reached.

4) If any of the requirements have been moved during steps
2 and 3, repeat the process for the whole column starting
again from the top two requirements (step 2). Keep
repeating this until no requirements are swapped during
a complete pass through the column, which means that
the requirements are now in priority order.

The result of the process is a ranked column of requirements
where the most important requirement is at the top of the
column and the least important one is at the bottom.

Bubble sort is yet another technique which is not empirically
studied elsewhere than in the paper by Karlsson et al. [11]. In
that study, bubble sort was actually one of the best methods
when comparing time consumption and subjective measures.
In terms of time consumption, bubble sort positioned at the
middle being faster than AHP but slower than the minimal
spanning tree technique. Bubble sort was the easiest method
to use and provided both reliable and fault tolerant results.

For small number of requirements, bubble sort seems to be a
viable alternative, however, Karlsson et al. point out that, like
AHP, bubble sort technique might have difficulties to scale up.
No empirical studies have tested bubble sort with medium or
large number of requirements.

VI. CONCLUSIONS

In this paper, we introduced nine basic requirements prior-
itization techniques: Numeral assignment technique, Analytic
hierarchy process (AHP), Hierarchy AHP, Minimal spanning
tree, Cumulative voting (CV), Hierarchical cumulative voting
(HCV), Priority groups, Binary priority list (BPL) and Bubble
sort.

The summary of the techniques is presented in Table I.
Based on the empirical evidence from the studies, the last
column of the table describes the subjective opinion of how
well the technique can prioritize different sizes of requirements
sets. In other words, is the technique best suited for small
(< 20), medium (21 − 100) or large (> 100) number of
requirements.

TABLE I
SUMMARY OF PRESENTED REQUIREMENTS PRIORITIZATION TECHNIQUES.

Technique Empirical
studies

Result
scale Speed Best suited for

number of req.
Numeral
assignment

[6], [8], [7] Nominal Average Medium, Large

AHP

[6], [11],
[13], [12],
[8], [14],
[7]

Ratio Slow Small

Hierarchy
AHP

[11] Ratio Average Medium, Large

Minimal
spanning tree

[11] Ratio Fast Medium, Large

CV [15], [12],
[8], [9]

Ratio Fast Small, Medium

HCV [5] Ratio Fast Large
Priority
groups

[11] Ordinal Average ?

BPL [11], [12],
[17]

Ordinal Average Small, Medium

Bubble sort [11] Ordinal Average Small

Based on the empirical evidence, it is quite impossible to
say, which of the methods is the best one. It really depends
on the situation. For example, if you don’t need to know the
relative differences between requirements, using a ratio scale
technique can be overkill and more simple methods, such
as BPL might be enough. The most suitable method might
also be a combination of techniques, such as first grouping
requirements with numeral assignment technique and then
ranking the most important ones with AHP.

Some of the studies provide conflicting results and some
techniques are not studied empirically enough. The settings
of the studies varied so much that it is hard to compare their
results to each other. First of all, the studies used different sets
of methods. There was only two studies ([11], [12]) which
compared five or more techniques, others usually just two or
three. Moreover, the variables used to compare the techniques
were not always the same in all studies. For example, some
of the studies did not measure scalability, others not accuracy.

Another problem is that almost all of the studies used a
very small number of requirements (20 or less). None of the
studies focused on large sets of requirements. Therefore, it is

hard to say how the techniques perform in real-life projects
which can have tens or even hundreds of requirements.

Further studies should focus on larger sets of requirements,
say 50 or more. Furthermore, the studies should follow the
research framework presented by Berander et al. [2]. The
framework clearly describes the variables which should be
used when comparing requirements prioritization techniques.
By using this framework, it would be much easier to compare
the results from the future studies.

It would be very interesting to see ”the mother of all priori-
tization experiments” which would use the framework by Be-
rander et al. to empirically study all the techniques presented in
this paper. It would also be interesting to compare these basic
single-criteria requirements prioritization techniquesto more
sophisticated prioritization methods (e.g. Wiegers’ method or
Cost-Value approach) to see how much more value do these
multi-criteria methods actually provide.

REFERENCES

[1] L. Lehtola, M. Kauppinen, and S. Kujala, “Requirements prioritization
challenges in practice,” inProc. of 5th Intl Conf. On Product Focused
Software Process Improvement (PROFES), 2004, pp. 497–508.

[2] P. Berander, K. Khan, and L. Lehtola, “Towards a researchframework on
requirements prioritization,” inSERPS06: Sixth Conference on Software
Engineering Research and Practice in Sweden, 2006, pp. 39–48.

[3] A. Perini, F. Ricca, A. Susi, and C. Bazzanella, “An empirical study to
compare the accuracy of ahp and cbranking techniques for requirements
prioritization,” in CERE ’07: Proceedings of the 2007 Fifth International
Workshop on Comparative Evaluation in Requirements Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 23–35.

[4] P. Berander and P. Jönsson, “Hierarchical cumulative voting (hcv)
prioritization of requirements in hierarchies,”International Journal of
Software Engineering & Knowledge Engineering, vol. 16, pp. 819–849,
2006.

[5] P. Berander and M. Svahnberg, “Evaluating two ways of calculating
priorities in requirements hierarchies - an experiment on hierarchical
cumulative voting,”J. Syst. Softw., vol. 82, no. 5, pp. 836–850, 2009.

[6] J. Karlsson, “Software requirements prioritizing,” inRequirements En-
gineering, 1996., Proceedings of the Second International Conference
on, 15-18 1996, pp. 110 –116.

[7] A. S. Danesh and R. Ahmad, “Study of prioritization techniques
using students as subjects,” inICIME ’09: Proceedings of the 2009
International Conference on Information Management and Engineering.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 390–394.

[8] S. Hatton, “Early prioritisation of goals book series,”in Advances in
Conceptual Modeling Foundations and Applications, vol. 4802, 235-
244 2007, pp. 517 –526.

[9] ——, “Choosing the right prioritisation method,” inSoftware Engineer-
ing, 2008. ASWEC 2008. 19th Australian Conference on, 26-28 2008,
pp. 517 –526.

[10] T. Saaty, The Analytic Hierarchy Process, Planning, Piority Setting,
Resource Allocation. New york: McGraw-Hill, 1980.

[11] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods for
prioritizing software requirements,”Information and Software Technol-
ogy, vol. 39, no. 14-15, pp. 939 – 947, 1998.

[12] V. Ahl, “An experimental comparison of five prioritization
methods - investigating ease of use, accuracy and
scalability,” Master’s thesis, Blekinge Institute of
Technology, Ronneby, Sweden, 2005. [Online]. Available:
http://www.bth.se/fou/cuppsats.nsf/all/86a759a57c335911c1257088005e42bc/
$file/Master thesis Viggo Ahl.pdf

[13] L. Lehtola and M. Kauppinen, “Empirical evaluation of two require-
ments prioritization methods in product development projects book
series lecture notes in computer science.” Springer Berlin/ Heidelberg,
2004, pp. 161–170.

[14] L. Karlsson, T. Thelin, B. Regnell, P. Berander, and C. Wohlin, “Pair-
wise comparisons versus planning game partitioning–experiments on
requirements prioritisation techniques,”Empirical Softw. Engg., vol. 12,
no. 1, pp. 3–33, 2007.

[15] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm,
“An industrial case study on distributed prioritisation inmarket-driven
requirements engineering for packaged software,”Requirements Engi-
neering, vol. 6, no. 1, pp. 51–62, 2001.

[16] Q. Ma, “The effectiveness of requirements prioritization techniques for
a medium to large number of requirements: a systematic literature
review,” Master’s thesis, Auckland University of Technology, Auckland,
New Zealand, 2009. [Online]. Available: http://hdl.handle.net/10292/833

[17] T. Bebensee, I. van de Weerd, and S. Brinkkemper, “Binary priority list
for prioritizing software requirements,” 2010, unpublished. [Online].
Available: http://people.cs.uu.nl/sjaak/Papers/
Software%20Product%20Management/ThomasBebensee/BPLsubmitted.pdf

